

# Fundamental concepts of multimodal deep learning for disinformation detection (hands-on)

Stefanos-lordanis Papadopoulos  
(stefpapad@iti.gr)

AIDA AICET 2025 @ Thessaloniki, 16 July 2025



# Multimodal (Mis)Information?



**Claim:** "People in China tearing down a 5G tower in an attempt to stop the spread of COVID-19."

**Fact-check:** "... anti-surveillance protesters tearing down a "smart" lamppost in Hong Kong."



**Claim:** "A news report on Russia's invasion of Ukraine showed a crisis actor sitting up while in a body bag."

**Fact-check:** "A 'die-in' climate protest in Austria"

<https://www.snopes.com/fact-check/5g-tower-torn-down-china-covid>

<https://www.snopes.com/fact-check/climate-protest-ukraine-body-bag>

# Multimodal Misinformation

**Misinformation:** False or misleading information (regardless of intent to deceive).

**Multimodal Misinformation:** Misinformation conveyed through multiple modalities (i.e. images and texts) arising through a falsified relationship or mismatch between the modalities.

**Visuals can amplify misinformation:** Images and videos attract more attention, are shared more widely, and can make false claims more believable.

*Li, Y., & Xie, Y. (2020). Is a picture worth a thousand words? An empirical study of image content and social media engagement. Journal of marketing research, 57(1), 1-19.*

*Newman, E. J., Garry, M., Bernstein, D. M., Kantner, J., & Lindsay, D. S. (2012). Nonprobative photographs (or words) inflate truthiness. Psychonomic Bulletin & Review, 19(5), 969-974.*

# A (very brief) history of multimodal misinformation

**Dissemination Technologies** can affect speed and reach (e.g., printing press, TV, internet, social media).

**Representational Technologies** can create new forms of misinformation (photography, film, photoshop, DeepFakes, text-to-image generators).



Witches presenting wax dolls to the devil, featured in *The History of Witches and Wizards* (1720)



"Composite portraits" by Francis Galton, used to falsely claim visual proof of "criminal types" (1877)



Benito Mussolini on horseback was altered to remove the horse handler, to make it appear more heroic. (1942)



An AI-generated image used to show "dozens of missiles raining down simultaneously on Tel Aviv" (June 2025)

# Multimodal Misinformation Detection



The aftermath of environmentalist Greta Thunberg's speech at the Glastonbury Music Festival in June 2022

**Input:** Image-Text pair under examination



**Model**

Modality Representation

Modality Fusion

Optimization



Truthful



Out-of-context



**Output**

# Evidence-based Detection



“An electric-powered BasiGo bus bursting into flames on Karen Road in Kenya.”



*“According to reports, the harrowing incident happened in **Perugia in Italy**. The bus in the video was an **Irisbus Iveco Cityclass** with an internal combustion engine and **compressed natural gas (CNG)** fuel tanks mounted on the roof.”*

**Claim**

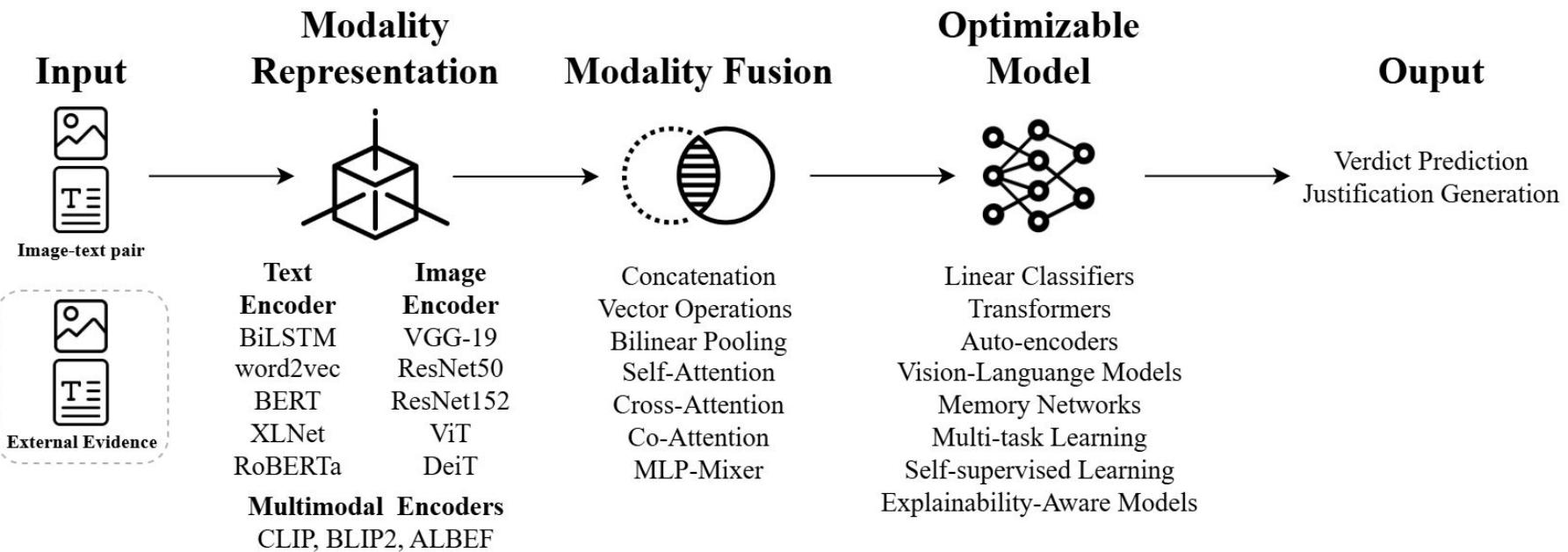
**Evidence Retrieval**

Using Inverse Image Search (Google Images)

**Detector**      **Verdict**



# Related Work: Detection methods



# Related Work: Datasets

| Dataset                       | # Pairs   | Construction    | Data Source                                          |                                                                                |
|-------------------------------|-----------|-----------------|------------------------------------------------------|--------------------------------------------------------------------------------|
| Fauxtography [83]             | 1,233     | Annotated       | Snopes, Reuters                                      | <b>Annotated datasets:</b> Often limited in scale and diversity.               |
| Weibo [27]                    | 9,528     | Weak annotation | Sina Weibo                                           |                                                                                |
| Twitter (MediaEval 2015) [10] | 15,624    | Weak annotation | Twitter                                              |                                                                                |
| Twitter (MediaEval 2016) [11] | 17,857    | Weak annotation | Twitter                                              |                                                                                |
| Fakeddit [42]                 | 680,798   | Weak annotation | Reddit                                               |                                                                                |
| MAIM [26]                     | 239,968   | Synthetic (OOC) | Flickr30k, MS COCO                                   |                                                                                |
| COSMOS (Training set) [6]     | 200,000   | Synthetic (OOC) | News Outlets                                         |                                                                                |
| NewsCLIPpings (Merged) [36]   | 85,360    | Synthetic (OOC) | News Outlets                                         |                                                                                |
| Twitter-COMMs [9]             | 2,468,592 | Synthetic (OOC) | Twitter                                              |                                                                                |
| MEIR [58]                     | 140,096   | Synthetic (NEM) | Flickr                                               |                                                                                |
| TamperedNews [41]             | 72,561    | Synthetic (NEM) | News Outlets                                         | <b>Synthetic data:</b> May lack the complexity and realism of real-world data. |
| CHASMA [47]                   | 291,782   | Synthetic (MC)  | News Outlets, Reddit                                 |                                                                                |
| FACTIFY [38]                  | 50,000    | Weak annotation | Twitter, <a href="#">News/Fact-check Articles</a>    |                                                                                |
| NewsCLIPpings+ [1]            | 85,360    | Synthetic (OOC) | News Outlets, <a href="#">Search API</a>             |                                                                                |
| COSMOS (Test set) [6]         | 1,700     | Annotated       | News/Fact-check Articles                             |                                                                                |
| VERITE (Benchmark) [47]       | 1,000     | Annotated       | Fact-check Articles, <a href="#">Search API</a> [49] |                                                                                |

# The NewsCLIPpings dataset

(1) **Query Caption:** Angela Merkel speaks to the German parliament.



Pristine



Semantics / CLIP Text-Image



Semantics / CLIP Text-Text



Person / SBERT-WK Text-Text



N/A

(2) **Query Caption:** Fukushima Daiichi nuclear power plant after Japan's earthquake and tsunami in March.



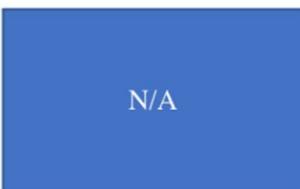
Pristine



Semantics / CLIP Text-Image



Semantics / CLIP Text-Text



N/A

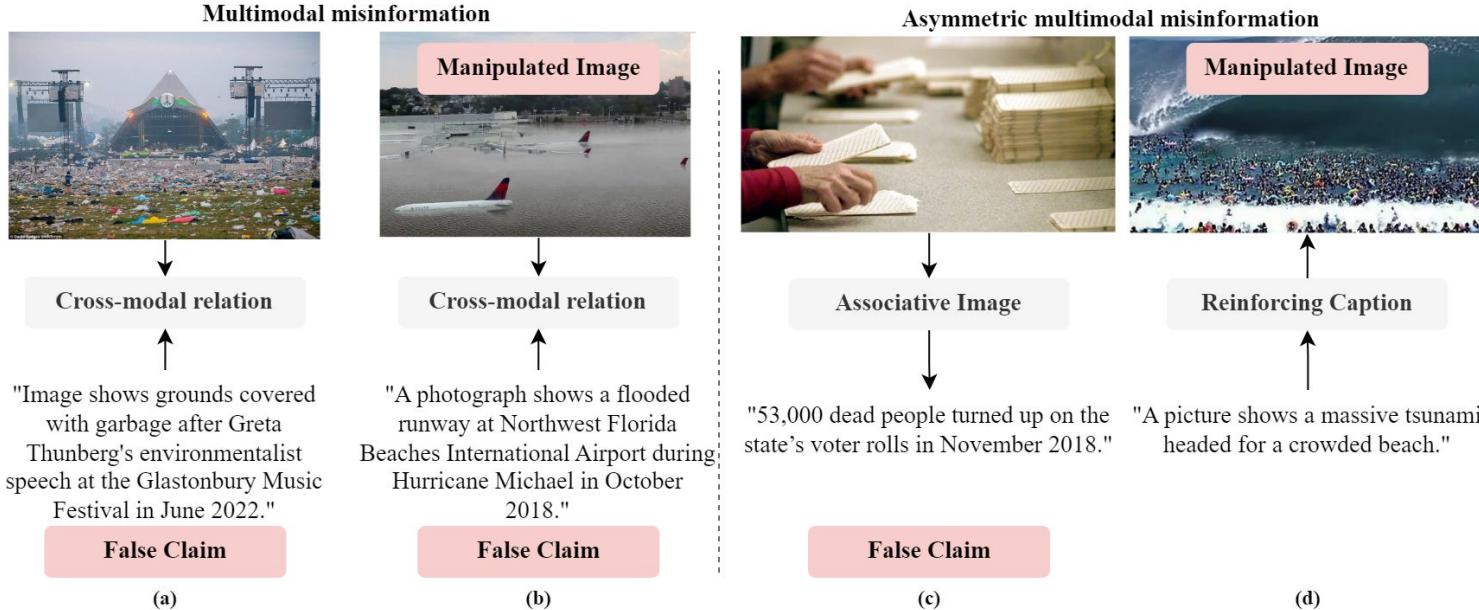


Scene / ResNet Place

Average human performance (crowdsourced): 65.6% (96.2% truthful, 35.0% out-of-context)

Luo, G., Darrell, T., & Rohrbach, A. (2021, November). *NewsCLIPpings: Automatic Generation of Out-of-Context Multimodal Media*. In *Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing* (pp. 6801-6817).

# VERITE Benchmark (Verification of Image-Text pairs)



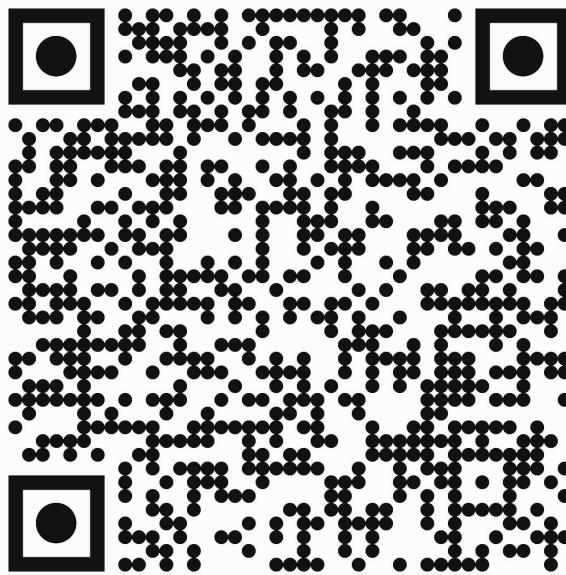
338 truthful pairs, 338 “Miscaptioned” pairs, and 324 “Out-of-Context” pairs from Snopes and Reuters  
Excluding “Asymmetric” samples and leveraging “Modality Balancing”

# Pipeline (Today's Task)

- Training Dataset: NewsCLIPpings (Train Set)
- Data Exploration
- Feature Extraction
- Model / Classifier
- Training
- Evaluation: Accuracy on VERITE and NewsCLIPpings (Test Set)



# Resources: Data and Google Colab



<https://shorturl.at/VENo9>

# Project Structure

```
|— hands_on/           (if working with COLAB, “mount” directly to Google Drive)
|   |— news_clippings
|   |   |— train_data.csv
|   |   |— ...
|   |   |— news_clippings_CLIP_ViT-L14_image_features.npy
|   |   |— ...
|   |— VERITE/
|   |   |— images/
|   |   |   |— false_0.jpg
|   |   |   |— ...
|   |   |— VERITE.csv
|— code.py
```

# 1. Data Exploration & Feature Extraction

1. Load Datasets
2. Data Exploration
3. Feature Extraction *[Only for VERITE! NewsCLIPpings features are provided]*
  - a. Load CLIP ViT L/14 (pretrained="openai")
    - i. [https://github.com/mlfoundations/open\\_clip](https://github.com/mlfoundations/open_clip)
  - b. Iterate over the VERITE dataset
  - c. Pre-process the images and texts (single items or a batch of items)
  - d. Extract the embeddings with CLIP and store them in a list
  - e. Also store the IDs of the items
  - f. Save them as numpy files:
    - i. VERITE\_CLIP\_ViT-L14\_image\_features.npy
    - ii. VERITE\_CLIP\_ViT-L14\_text\_features.npy
    - iii. VERITE\_CLIP\_ViT-L14\_ids.npy
4. Load Features
5. Create a Pytorch DataLoader [return image features, text features, label]

## 2. Training: Modality Fusion

Given:

$I = \text{CLIP(img)}$ ,  $d_{img} = 768$

$T = \text{CLIP(txt)}$ ,  $d_{txt} = 768$

Network input  $d$

**Create a function:** `def combine_features(a, b, fusion_method):` that performs simple modality fusion operations:

- Concatenation (“concat”)
  - $[I; T]$ ,  $d = d_{img} + d_{txt} = 1,536$
- Addition (“add”)
  - $[I+T]$ ,  $d=768$
- Subtraction (“sub”)
  - $[I-T]$ ,  $d=768$
- Multiplication (“mul”)
  - $[I*T]$ ,  $d=768$
- Combined (“combine\_all”)
  - $[I ; T ; I+T ; I-T ; I*T]$ ,  $d=3,840$  ( $768 * 5$ )

**Train:** a simple neural-network (MLP) with PyTorch with different modality fusion operations

**Evaluate:** calculate the accuracy on NewsCLIPpings test set and VERITE (true vs out-of-context)

## 2. Training: Other models

- Self-attention for Modality Fusion:
  - We will use a `nn.TransformerEncoder()`
  - Input:  $[\text{CLS}, \mathbf{I}, \mathbf{T}, \mathbf{I}+\mathbf{T}, \mathbf{I}-\mathbf{T}, \mathbf{I}^*\mathbf{T}]$  ( $d=768$ , 6 tokens)
    - Where  $\text{CLS}$ : “classification token” — a trainable `nn.Parameter()`
  - We use the transformed “ $\text{CLS}$ ” token of the `TransformerEncoder` to classify the image-text pair
- Similarity-based baseline:
  - Calculate the cosine similarity between (image, text) under verification
  - Use a simple neural network to predict the label only based on the similarity score

### 3. Discussion

We explored:

- Different Modality Fusion operations
- Self-attention for Modality Fusion

Other approaches?

### 3. Discussion

We explored:

- Different Modality Fusion operations
- Self-attention for Modality Fusion

Other approaches?

- Experiment with different backbone encoders
- Fine-tune the backbone encoders for the task
- Ensemble learning
- Experiment with data augmentation
- Use of Large Vision-Language Models
- Explore different ways of generating training data
- Integrate external information / evidence
- ...

# References

**VERITE**: Papadopoulos, S. I., Koutlis, C., Papadopoulos, S., & Petrantonakis, P. C. (2024). VERITE: a Robust benchmark for multimodal misinformation detection accounting for unimodal bias. *International Journal of Multimedia Information Retrieval*, 13(1), 4.

**NewsCLIPpings**: Luo, G., Darrell, T., & Rohrbach, A. (2021, November). NewsCLIPpings: Automatic Generation of Out-of-Context Multimodal Media. In *Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing* (pp. 6801-6817).

**Modality Fusion**: Papadopoulos, S. I., Koutlis, C., Papadopoulos, S., & Petrantonakis, P. C. (2025). Red-dot: Multimodal fact-checking via relevant evidence detection. *IEEE Transactions on Computational Social Systems*.

**Transformer Encoder**: Papadopoulos, S. I., Koutlis, C., Papadopoulos, S., & Petrantonakis, P. (2023, June). Synthetic misinformers: Generating and combating multimodal misinformation. In *Proceedings of the 2nd ACM International Workshop on Multimedia AI against Disinformation* (pp. 36-44).

**Similarity-based Baseline**: Papadopoulos, S. I., Koutlis, C., Papadopoulos, S., & Petrantonakis, P. C. (2025, February). Similarity over Factuality: Are we making progress on multimodal out-of-context misinformation detection?. In *2025 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)* (pp. 5041-5050). IEEE.